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In this paper, we consider the survival probability for a discrete semi-Markov risk model,

which assumes individual claims are influenced by a Markov chain with finite state space

and there is autocorrelation among consecutive claim sizes. Our semi-Markov risk model is

similar to the one studied in Reinhard and Snoussi [1, 2] without the restriction imposed on

the distributions of the claims. In particular, the model of study includes several existing

risk models such as the compound binomial model (with time-correlated claims) and the

compound Markov binomial model (with time-correlated claims) as special cases. The main

purpose of the paper is to develop a recursive method for computing the survival probability

in the two-state model, and present some numerical examples to illustrate the application

of our results.
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1. Introduction

Markov-modulated risk models, where the surplus processes are influenced by an envi-

ronmental Markov chain, has attracted a lot of attention recently. Some recent papers on ruin

problems for these models include Lu and Li [3, 4], Lu [5], Ng and Yang [6], Zhu and Yang

[7, 8], Zhang [9], Diko and Usábel [10] and references therein.

In a Markov-modulated risk model, the premiums, claim amounts and claim number process

are usually assumed to be (conditionally) independent given the environmental Markov chain,

that is, they only depend on the current state of the Markov chain. However, this (conditional)

independence assumption may be somewhat too strong in some applications. Janssen and

Reinhard [11] first considered a semi-Markovian dependence structure where the claim amounts

and inter-claim times not only depend on the current state but also the next state of the

environmental Markov chain. They derived the survival probabilities in terms of an infinite

series of matrix convolutions. Albrecher and Boxma [12] considerably generalized the approach

of Janssen and Reinhard [11] and investigated the discounted penalty function in such a risk

model by means of Laplace-Stieltjes transforms. Recently, Cheung and Landriault [13] further

studied the work of Albrecher and Boxma [12] by relaxing some assumptions pertaining to the

inter-claim time distribution.

With a strict restriction imposed on the total claim amount, Reinhard and Snoussi

[1, 2] considered a discrete-time semi-Markov risk model and derived recursive formulae for
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calculating the distribution of the surplus just prior to ruin and the distribution of the deficit at

ruin in a special case. In this paper, we shall relax the restriction of Reinhard and Snoussi [1, 2]

and derive closed-form expressions for the ruin probability in the two-state semi-Markov risk

model. Since the model of study embraces some existing discrete-time risk models including the

compound binomial model (with time-correlated claims) and the compound Markov binomial

model (with time-correlated claims), the present paper generalizes the study of ruin probability

for these risk models.

The rest of the paper is organized as follows. In Section 2, we present the mathematical

formulation of the discrete semi-Markov model. In Section 3, we derive recursive formulae for

computing survival probabilities for the model. Section 4 is devoted to finding the initial values

for applying the recursive formulae. Several special cases of our model are considered in Section

5. Finally, some numerical examples are presented in Section 6.

2. The model

The model considered in this paper is based on a discrete-time semi-Markov risk model

proposed by Reinhard and Snoussi [1, 2]. Let (Jn, n ∈ N) be a homogeneous, irreducible and

aperiodic Markov chain with finite state space M = {1, · · · ,m} (1 ≤ m < ∞). Its one-step

transition probability matrix is given by

P = (pij)i,j ∈M , pij = P(Jn = j|Jn−1 = i, Jk, k ≤ n− 1),

with a unique stationary distribution π = (π1, · · · , πm). The insurer’s surplus at the end of the

t-th period ( t ∈ N+ ), Ut, has the form

Ut = u+ ct−
t∑

i=1

Yi, t ∈ N+, (1)

where Yi denotes the total claim amount in the i-th period, and c ∈ N+ = {1, 2, · · · } is the

amount of premium per period. We further assume that the insurer has a non-negative initial

surplus u, and that Yt’s are nonnegative integer-valued random variables. The distribution of

Yt’s is influenced by the environmental Markov chain (Jn, n ∈ N) in the way that (Jt, Yt) depends

on {Jk, Yk; k ≤ t− 1} only through Jt−1. Define

gij(l) = P(Yt = l, Jt = j|Jt−1 = i, Jk, Yk, k ≤ t− 1), l ∈ N,

which describes the conditional joint distribution of Yt and Jt given the previous state Jt−1,

and plays a key role in the following derivations. Note that the variables {Yt, t ∈ N+} are

conditionally independent given the environmental Markov chain.

Assume that premiums are received at the beginning of each time period with c = 1. As

was mentioned in Gerber et al. [14], this is the case when claim amounts are multiples of the

periodic premium; and hence, after a change of monetary units, the periodic premium is 1.

Assume further that for all i and j,

µij =
∞∑
k=0

kgij(k) <∞,
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and define

µi =
m∑
j=1

µij , i ∈M.

Define τ = inf{t ∈ N+ : Ut < 0} as the time of ruin and let

ψi(u) = P(τ <∞|U0 = u, J0 = i), i ∈M, u ∈ N

be the ultimate ruin probability given the initial surplus u and the initial environment state

i. Let φi(u) = 1 − ψi(u) be the corresponding survival probability. To make sure that ruin is

not certain, we assume that the positive safety loading condition holds, that is,
∑m

i=1 πiµi < 1.

Here our aim is to derive recursive formulae for computing φi(u).

Remark 1. In Reinhard and Snoussi [1, 2], it is assumed that{
gij(0) = 0, ∀j ∈M, i 6= 1,∑

j∈M g1j(0) > 0.
(2)

This condition says that zero claims are only possible when the state prior to the occurrence of

the claim is state 1. Without this condition, the recursive formulae cannot be established using

their method even for m = 2. Here we relax the condition, and consider the case of m = 2.

Furthermore, without restriction (2), model (1) covers the compound binomial model (with time-

correlated claims) and the compound Markov binomial model (with time-correlated claims) as

special cases. For details, see Section 5.

3. Recursive formulae

In this section, we derive recursive formulae for computing survival probabilities φi(u), i =

1, 2. To do this, we adopt the method of Chen et al. [15] in which a dividend problem for the

same discrete semi-Markov risk model was considered.

Considering the first time period, we obtain the following recursion

φi(u) =

2∑
j=1

u+1∑
k=0

gij(k)φj(u+ 1− k), i = 1, 2, u ∈ N. (3)

In order to obtain recursive formulae for computing φi(u), we employ the technique of generating

functions. Let φ̃i(s) and g̃ij(s) denote the generating functions of φi(k) and gij(k) respectively.

By multiplying both sides of (3) by su+1 and summing over u from 0 to ∞, we obtain

sφ̃i(s) =

2∑
j=1

g̃ij(s)φ̃j(s)−
2∑

j=1

gij(0)φj(0), i = 1, 2.

Let ei =
∑2

j=1 gij(0)φj(0), i = 1, 2. Then we have{
(g̃11(s)− s)φ̃1(s) + g̃12(s)φ̃2(s) = e1,

g̃21(s)φ̃1(s) + (g̃22(s)− s)φ̃2(s) = e2.
(4)
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It follows from (4) that

[(g̃11(s)− s) (g̃22(s)− s)− g̃21(s)g̃12(s)] φ̃1(s) = e1 (g̃22(s)− s)− e2g̃12(s). (5)

For notational convenience, we define

ḡii(1) = gii(1)− 1, ḡii(k) = gii(k), i = 1, 2, k ∈ N\{1};

fk =
k∑

n=0

[
ḡ11(n)ḡ22(k − n)− g21(n)g12(k − n)

]
,

g
(1)
k =

k∑
n=0

φ1(n)fk−n, h
(1)
k = e1ḡ22(k)− e2g12(k), k ∈ N.

Let g̃(1)(s), f̃(s) and h̃(1)(s) denote the generating functions of g
(1)
k , f(k) and h

(1)
k respectively.

Note that for any two sequences {a(n), n = 0, 1, · · · } and {b(n), n = 0, 1, · · · } with generating

functions ã(s) and b̃(s), we have the following property

ã(s)̃b(s) =

∞∑
n=0

a ∗ b(n)sn =

∞∑
n=0

n∑
k=0

a(k)b(n− k)sn.

Applying this property to (5) yields

g̃(1)(s) = f̃(s)φ̃1(s) = h̃(1)(s).

Then comparing the coefficients of sk in both sides of the above equation gives g
(1)
k = h

(1)
k , k ∈ N,

that is,

k∑
n=0

φ1(n)fk−n = h
(1)
k , k ∈ N. (6)

Similarly, one can obtain

k∑
n=0

φ2(n)fk−n = h
(2)
k , k ∈ N, (7)

where h
(2)
k = −e1g21(k) + e2ḡ11(k).

Proposition 1. If both f0 = 0 and f1 = 0, then π1µ1 + π2µ2 ≥ 1, that is, the positive safety

loading condition does not hold.

Proof. It is easy to see that the unique stationary distribution is

π = (π1, π2) =
( p21
p21 + p12

,
p12

p21 + p12

)
. (8)

On the other hand,

f1 = g11(0) [g22(1)− 1] + g22(0) [g11(1)− 1]− g21(0)g12(1)− g21(1)g12(0) ≤ 0.

So if f1 = 0, then

g11(0) = 0, g22(0) = 0, g21(0)g12(1) = 0, g21(1)g12(0) = 0. (9)

In addition, g21(0)g12(0) = 0 since f0 = 0. Hence there are only two possibilities:
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(i) g12(0) = 0 and g21(0) 6= 0: From (9), we see g12(1) = 0. Then

µ1 =
∞∑
k=0

k[g11(k) + g12(k)] =
∞∑
k=1

kg11(k) +
∞∑
k=2

kg12(k) ≥ p11 + 2p12 = 1 + p12,

µ2 =

∞∑
k=0

k[g21(k) + g22(k)] ≥ p21 + p22 − g21(0) = 1− g21(0).

Therefore,

π1µ1 + π2µ2 =
p21µ1 + p12µ2
p21 + p12

≥ p21 + p12 + p12(p21 − g21(0))

p21 + p12
≥ 1.

(ii) g21(0) = 0 and g12(0) 6= 0 : By similar arguments, we have

g21(1) = 0, µ1 ≥ 1− g12(0), µ2 ≥ 1 + p21,

and

π1µ1 + π2µ2 =
p21µ1 + p12µ2
p21 + p12

≥ p21 + p12 + p21(p12 − g12(0))

p21 + p12
≥ 1.

�

Finally, from (6), (7) and Proposition 1, we obtain the following recursive formulae

φi(k) =


1
f0

[
h
(i)
k −

∑k−1
n=0 φi(n)fk−n

]
if f0 6= 0,

1
f1

[
h
(i)
k+1 −

∑k−1
n=0 φi(n)fk+1−n

]
if f0 = 0 and f1 6= 0.

(10)

for i = 1, 2 and k ∈ N+.

4. The initial value for φi(u)

After obtaining (10) for computing φi(u), we need to determine the initial values φi(0), i =

1, 2. In Chen et al. [15], they took full advantage of the boundary conditions for barrier dividend

strategy to obtain the initial values for the expected discounted dividends. Unfortunately, their

method is inapplicable here. In order to calculate φ1(0) and φ2(0), we need to find two equations

associated with them.

4.1. The first equation

For i = 1, 2, define

di(0) = φi(0), di(u) = φi(u)− φi(u− 1), u ≥ 1,

Ai(0) = h
(i)
0 , Ai(u) = h(i)u − h

(i)
u−1, u ≥ 1.
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It follows from (6) and (7) that

f0di(u+ 1) = Ai(u+ 1)−
u∑

n=0

φi(n)fu+1−n −
u−1∑
n=0

φi(n)fu−n

= Ai(u+ 1)− di(0)fu+1 −
u∑

n=1

φi(n)fu+1−n +

u−1∑
n=0

φi(n)fu−n

= Ai(u+ 1)− di(0)fu+1 −
u∑

n=1

di(n)fu+1−n,

for u ∈ N. That is, for u ∈ N,

u+1∑
l=0

fldi(u+ 1− l) = Ai(u+ 1). (11)

Let f̃(s), d̃i(s) and Ãi(s) denote the generating functions of fu, di(u) and Ai(u) respectively.

Then, by (11), we have

f̃(s)d̃i(s)− f0di(0) = Ãi(s)−Ai(0), i = 1, 2.

Since Ai(0) = f0di(0), we obtain

f̃(s)d̃i(s) = Ãi(s), i = 1, 2, (12)

which in turn yield

Ã′i(s) = f̃ ′(s)d̃i(s) + f̃(s)d̃′i(s), i = 1, 2. (13)

Since

d̃i(1) =

∞∑
u=0

di(u) = lim
n→∞

φi(n) = 1, and Ãi(1) = lim
n→∞

Ai(n) = 0,

it follows from (12) that f̃(1) = 0 which in turn gives Ã′i(1) = f̃ ′(1) due to (13).

Note that h
(1)
k can be rewritten as

h
(1)
k = ξ

(1)
k φ1(0) + η

(1)
k φ2(0), k ∈ N, (14)

where

ξ
(1)
k = g11(0)ḡ22(k)− g21(0)g12(k), and η

(1)
k = g12(0)ḡ22(k)− g22(0)g12(k).

So we have

Ã′1(1) =
∞∑
k=1

k(h
(1)
k − h

(1)
k−1) =

∞∑
k=1

k∑
i=1

(h
(1)
k − h

(1)
k−1) =

∞∑
i=1

∞∑
k=i

(h
(1)
k − h

(1)
k−1)

=

∞∑
i=1

(−h(1)i−1 + lim
k→∞

h
(1)
k ) = −

∞∑
i=0

h
(1)
i = −φ1(0)

∞∑
i=0

ξ
(1)
i − φ2(0)

∞∑
i=0

η
(1)
i

= φ1(0)
(
g11(0)p21 + g21(0)p12

)
+ φ2(0)

(
g12(0)p21 + g22(0)p12

)
.
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On the other hand,

f̃ ′(1) =

∞∑
k=0

kfk =

∞∑
k=0

k∑
n=0

k[ḡ11(n)ḡ22(k − n)− g21(n)g12(k − n)]

=

∞∑
n=0

∞∑
k=n

k[ḡ11(n)ḡ22(k − n)− g21(n)g12(k − n)]

=

∞∑
n=0

[
ḡ11(n)

∞∑
k=n

(k − n)ḡ22(k − n) + nḡ11(n)

∞∑
k=n

ḡ22(k − n)
]

−
∞∑
n=0

[
g21(n)

∞∑
k=n

(k − n)g12(k − n) + ng21(n)
∞∑
k=n

g12(k − n)
]

=
∞∑
n=0

ḡ11(n)
∞∑
k=0

kḡ22(k) +
∞∑
n=0

nḡ11(n)
∞∑
k=0

ḡ22(k)

−
∞∑
n=0

g21(n)
∞∑
k=0

kg12(k)−
∞∑
n=0

ng21(n)
∞∑
k=0

g12(k)

= −p12(µ22 − 1)− p21(µ11 − 1)− p21µ12 − p12µ21
= p12(1− µ2) + p21(1− µ1).

As a result, we obtain

φ1(0)
(
g11(0)p21 + g21(0)p12

)
+ φ2(0)

(
g12(0)p21 + g22(0)p12

)
= p12(1− µ2) + p21(1− µ1). (15)

Remark 2. By (8) and the positive safety loading condition π1µ1 + π2µ2 < 1, it is easy to see

that p12(1 − µ2) + p21(1 − µ1) > 0. Along the same lines, one can derive the same expression

for Ã′2(1), that is, the two expressions for Ã′1(1) and Ã′2(1) (derived using the same method)

coincide. Hence we need to seek an alternative method for constructing the second equation.

4.2. The second equation

In this subsection, we use an alternative method to find another relation between φ1(0) and

φ2(0). To do it, we consider several cases of f0.

Case 1. If f0 = 0, it follows from (6) that

f1φ1(0) = h
(1)
1 = ξ

(1)
1 φ1(0) + η

(1)
1 φ2(0),

which yields

K1φ1(0) +K2φ2(0) = 0, (16)

where

K1 = ξ
(1)
1 − f1 = g12(0)g21(1) + g22(0)(1− g11(1)),

K2 = η
(1)
1 = g12(0)(g22(1)− 1)− g22(0)g12(1).
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Furthermore,

K1 = K2 = 0 ⇐⇒ g12(0) = g22(0) = 0.

In this case, we have e1 = g11(0)φ1(0), e2 = g21(0)φ1(0), and

f1φ2(0) = h
(2)
1 = [−g11(0)g21(1) + g21(0)(g11(1)− 1)]φ1(0). (17)

Case 2. Suppose that f0 > 0. Let

H1(s) = (g̃11(s)− s) (g̃22(s)− s)− g̃21(s)g̃12(s),

H2(s) = e1 (g̃22(s)− s)− e2g̃12(s).

By (5), we have H1(s)φ̃1(s) = H2(s). Since

H2(0) = f0φ1(0) > 0, and H2(1) = e1(p22 − 1)− e2p12 < 0,

there exists a ρ ∈ (0, 1) such that H2(ρ) = 0, that is,

[g11(0)(g̃22(ρ)− ρ)− g21(0)g̃12(ρ)]φ1(0) = [g22(0)g̃12(ρ)− g12(0)(g̃22(ρ)− ρ)]φ2(0). (18)

If we know the the value of ρ, then the relation between φ1(0) and φ2(0) is obvious. Noting that

φ̃1(s) > 0 for any s ∈ (0, 1), we see that ρ is a solution to H1(s) = 0.

Case 3. If f0 < 0, then H1(0) = f0 < 0. On the other hand,

H1(−1) = (1 + g̃11(−1))(1 + g̃22(−1))− g̃21(−1)g̃12(−1)

> (1− g̃11(1))(1− g̃22(1))− g̃21(1)g̃12(1)

= (1− p11)(1− p22)− p21p12 = 0.

So there exists a ρ ∈ (−1, 0) such that H1(ρ) = 0, which in turn implies that H2(ρ) = 0. That

is, (18) also holds in this case.

5. Some special cases

In this section, we discuss a few special cases of model (1) which have been considered in

the literature.

5.1. The compound binomial model

In the compound binomial model, the surplus of an insurance company at time t is defined

by

Ut = u+ t−
t∑

i=1

IiXi, t ∈ N+, (19)

where the claim amounts Xi are independent and identically distributed (i.i.d.) positive integer-

valued random variables with common probability function f(k) = P(X = k), k = 1, 2, . . ., and
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Ii are i.i.d. Bernoulli random variables with mean q ∈ (0, 1). That is, in any time period, the

probability of having a claim is q and the probability of no claim is 1 − q = p. The compound

binomial model was first proposed by Gerber [16], and then extensively studied by Shiu [17],

Willmot [18], Dickson [19], Cheng et al. [20], Tan and Yang [21], and so on.

For i = 1, 2, if we let

gi1(k) =

{
p, k = 0,
0, k > 0,

gi2(k) =

{
0 , k = 0,

(1− p)f(k), k > 0,

then our model reduces to the compound binomial model. Let φ(u) = φ1(u) = φ2(u). In this

case, we have f0 = 0, and it follows from (10) that

φ(u) =
1

p

[
φ(u− 1)− q

u−1∑
n=0

φ(n)f(u− n)
]
, u = 1, 2, . . . . (20)

By (15), we obtain φ(0) = (1 − µq)/p, where µ =
∑∞

k=1 kf(k). This result is the same as that

in Shiu [17] and Willmot [18].

5.2. The compound Markov binomial model

An extension of the compound binomial model is the compound Markov binomial model, in

which {Ik, k ∈ N} in (19) is a two-state Markovian process with a transition probability matrix

P = (pij)i,j∈{1,2}, where pij = P(Ik+1 = j − 1|Ik = i − 1) for i, j ∈ {1, 2} and k ∈ N. Some

important references on the compound Markov binomial model include Cossette et al. [22, 23]

and Yuen and Guo [24].

For i = 1, 2, if we let

gi1(k) =

{
pi1, k = 0,
0 , k > 0,

gi2(k) =

{
0 , k = 0,

pi2f(k), k > 0,

then one can see that the compound Markov binomial model is a special case of our model. In

this case, we have f0 = 0. Again it follows from (10) that

φ2(u) = − 1

f1

[
φ2(u− 1) +

u−1∑
n=0

φ2(n)[(p11 − p21)f(u+ 1− n)− p22f(u− n)]
]
, u = 1, 2, · · · . (21)

By (17), we obtain

ψ2(0) =
(p11 − p21)(1− f(1)) + p21ψ1(0)

p11 − (p11 − p21)f(1)
,

which is the same as (7) of Cossette et al. [23]. Besides, by mathematical induction, one can

show that (21) is equivalent to (9) of Cossette et al. [23].

5.3. The compound binomial model with time-correlated claims

Another extension of the compound binomial model is the compound binomial model with

time-correlated claims studied by Yuen and Guo [25] and Xiao and Guo [26]. It is assumed that

every main claim produces a by-claim but the occurrence of the by-claim may be delayed. In any
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time period, the probability of having a main claim is q, 0 < q < 1, and thus the probability of no

main claim is p = 1− q. The by-claim and its associated main claim may occur simultaneously

with probability θ, or the occurrence of the by-claim may be delayed to the next time period

with probability 1 − θ. The main claim amounts X1, X2, . . . , are i.i.d. with mean µX ; and

the by-claim amounts Y0, Y1, Y2, . . . , are i.i.d. with mean µY ; and all the Xi’s and Yi’s are

independent.

Define the environmental Markov chain (Jn;n ∈ N) in the following way: {Jt = 1} implies

that the by-claim Yt−1 in time period t − 1 should not be delayed if it exists, while {Jt = 2}
means that there is a by-claim Yt−1 occurring in time period t. Then gij(k) is given by

g1j(k) =


p , j = 1, k = 0,

qθP(X1 + Y1 = k), j = 1, k > 0,
0 , j = 2, k = 0,

q(1− θ)P(X1 = k), j = 2, k > 0,

g2j(k) =


0 , j = 1, 2, k = 0,

pP(Y0 = k) + qθP(X1 + Y1 + Y0 = k), j = 1, k > 0,
q(1− θ)P(X1 + Y0 = k) , j = 2, k > 0.

As a result, we have f0 = 0. Using (15), we obtain

ψ1(0) =
q[µX + µY − 1− p(1− θ)]

p(p+ qθ)
,

which is the same as (15) of Xiao and Guo [26]. Also φ2(0) and the recursive formulae for

computing φi(u) can be obtained using (17) and (10) respectively.

5.4. The compound Markov binomial model with time-correlated claims

A more general extension of the compound binomial model is the compound Markov binomial

model with time-correlated claims. Specifically, suppose that {Ik, k ∈ N} in (19) is a two-state

Markovian process with a transition probability matrix P = (pij)i,j∈{1,2}, where pij = P(Ik+1 =

j − 1|Ik = i − 1) for i, j ∈ {1, 2} and k ∈ N. The two types of claims, namely the main claim

and by-claim, are defined in Section 5.3.

In this case, the environmental Markov chain (Jn;n ∈ N) is defined by Jn = In + 1,∀n ∈ N.

Then gij(k) is given by

g1j(k) =


p11 , j = 1, k = 0,
0 , j = 1, k > 0,
0 , j = 2, k = 0,

p12[(1− θ)P(X1 = k) + θP(X1 + Y1 = k)], j = 2, k > 0,

g2j(k) =


p21θ , j = 1, k = 0,

p21(1− θ)P(Y1 = k) , j = 1, k > 0,
0 , j = 2, k = 0,

p22[(1− θ)2P(Y0 +X1 = k) + θ2P(X1 + Y1 = k)
+ θ(1− θ)(P(X1 = k) + P(X1 + Y1 + Y0 = k))], j = 2, k > 0.

In this case, f0 = 0. By (15), we obtain

φ1(0) =
p12 + p21 − p12(µX + µY )

p21(p11 + p12θ)
.
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Using (17) and (10), one can derive φ2(0) and the recursive formulae for computing φi(u),

respectively.

6. Numerical examples

In this section, we provide three numerical examples to illustrate the application of our

results. These examples cover each of the three cases in Section 4.2. We start with the example

considered by Reinhard and Snoussi [1, 2].

Example 1 (Case 1). The distribution of claims gij(k) is given in Table 1.

[Table 1.]

By direct calculation, we have

p12 =
1

8
, p21 =

2

3
, µ1 =

1

2
, µ2 = 2, f0 = 0, f1 = −25

48
.

Then it follows from (15) and (17) that φ1(0) = 1/2 and φ2(0) = 0. Furthermore,

f2 =
5

6
, f3 = − 5

16
, fk = 0, k ≥ 4,

h
(1)
2 = ξ

(1)
2 φ1(0) =

5

48
φ1(0), h

(1)
k = 0, k ≥ 3.

So we have

φ1(1) =
1

f1
(h

(1)
2 − f2φ1(0)) =

7

10
.

Using (6), we obtain

f1φ1(k) = −f2φ1(k − 1)− f3φ1(k − 2) = (f1 + f3)φ1(k − 1)− f3φ1(k − 2), k ≥ 2,

that is,

φ1(k)− φ1(k − 1) =
f3
f1

[φ1(k − 1)− φ1(k − 2)], k ≥ 2.

Therefore,

φ1(k)− φ1(k − 1) = [φ1(1)− φ1(0)]
(f3
f1

)k−1
=

1

5

(3

5

)k−1
, k ≥ 1,

which yields

φ1(k) = 1− 1

2

(3

5

)k
, k ≥ 1.

Similarly we get

φ2(k) = 1− 7

10

(3

5

)k−1
, k ≥ 1.

One can see that the results obtained above are the same as those in Reinhard and Snoussi

[1, 2].

11



Example 2 (Case 2). The distribution of claims gij(k) is given in Table 2.

[Table 2.]

By direct calculation, we have

p11 =
5

8
, p12 =

3

8
, p21 =

1

3
, p22 =

2

3
,

µ1 = µ11 + µ12 =
1

2
+

3

8
=

7

8
, µ2 = µ21 + µ22 =

1

2
+

1

3
=

5

6
.

Then by (15), we obtain

1

8
φ1(0) +

11

48
φ2(0) =

5

48
. (22)

Since f0 = 3/16 > 0, this example corresponds to Case 2 of Section 4.2. Besides,

g̃11(s) =
1

8
(3 + s+ s3), g̃12(s) =

1

8
(1 + s+ s2),

g̃21(s) =
1

12
(3s+ s3), g̃22(s) =

1

6
(3 + s2),

H1(s) =
1

96
(1− s)(−s4 + 12s3 + 24s2 − 63s+ 18).

Using Matlab, we get ρ = 0.335626627250400, which is the unique solution to H1(s) = 0 on

(0, 1). Combining (18) and (22) with ρ = 0.335626627250400, we obtain

φ1(0) = 0.291173297926802, φ2(0) = 0.295723655676290.

Having obtained the initial values, we can use (10) to calculate the values of φi(u), u ∈ N. Some

of the values are given in Table 3.

[Table 3.]

Remark 3. The implementation of (10) requires a high degree of accuracy. If the figures in

Table 3 are accurate to four decimal places, it will lead to some perverse results. For example,

if the values of ρ, φ1(0) and φ2(0) are given by

ρ = 0.3356, φ1(0) = 0.2912, φ2(0) = 0.2957,

we obtain

φ1(8) = 1.1225, φ1(9) = 1.5661, . . . ,

which are quite absurd.

Finally, we deal with an example which corresponds to Case 3 of Section 4.2.
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Example 3 (Case 3). In this example, gij(k) is given by gij(k) = pijgj(k) with

P =

(
1
3

2
3

3
4

1
4

)
, g1(k) =

(1

2

)k+1
, g2(k) =

2

3

(1

3

)k
, k ∈ N.

By direct calculation, we have f0 = −5/36 < 0,

µ1 = µ11 + µ12 =
1

3
+

1

3
=

2

3
, µ2 = µ21 + µ22 =

3

4
+

1

8
=

7

8
.

Then by (15), we obtain

3

8
φ1(0) +

4

9
φ2(0) =

1

3
. (23)

On the other hand,

g̃11(s) =

∞∑
k=0

skg11(k) =
1

3(2− s)
, g̃12(s) =

4

3(3− s)
,

g̃21(s) =
3

4(2− s)
, g̃22(s) =

1

2(3− s)
,

H1(s) =
(s− 1)(6s3 − 24s2 + 17s+ 5)

6(2− s)(3− s)
.

Again, using Matlab, we get ρ = −0.221212431707700, which is the unique solution to H1(s) = 0

on (−1, 0). Combining (18) and (23) with ρ = −0.221212431707700, we obtain

φ1(0) = 0.420307913413719, φ2(0) = 0.395365198057175.

Then the values of φi(u), u ∈ N, can be calculated using (10). Some of these values are given

in Table 4.

[Table 4.]
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semi-Markoviens, ASTIN Bulletin 15 (2) (1985) 123-134.

[12] H. Albrecher, O.J. Boxma, On the discounted penalty function in a Markov-dependent risk
model, Insurance: Mathematics and Economics 37 (2005) 650-672.

[13] E.C. Cheung, D. Landriault, Analysis of a generalized penalty function in a semi-markovian
risk model, North American Actuarial Journal 13 (4) (2009) 497-513.

[14] H.U. Gerber, E.S.W. Shiu, H.L. Yang, An elementary approach to discrete models of divi-
dend strategies, Insurance: Mathematics and Economics 46 (1) (2010) 109-116.

[15] M. Chen, J. Guo, X. Wu, Expected discounted dividends in a discrete semi-markov risk
model, (2013) (Submitted).

[16] H.U. Gerber, Mathematical fun with the compound binomial process, ASTIN Bulletin
18 (2) (1988) 161-168.

[17] E.S.W. Shiu, The probability of eventual ruin in the compound binomial model, ASTIN
Bulletin 19 (2) (1989) 179-190.

[18] G.E. Willmot, Ruin probabilities in the compound binomial model, Insurance: Mathematics
and Economics 12 (2) (1993) 133-142.

[19] D.C. Dickson, Some comments on the compound binomial model, ASTIN Bulletin 24 (1)
(1994) 33-45.

14



[20] S. Cheng, H.U. Gerber, E.S.W. Shiu, Discounted probabilities and ruin theory in the com-
pound binomial model, Insurance: Mathematics and Economics 26 (2) (2000) 239-250.

[21] J. Tan, X. Yang, The compound binomial model with randomized decisions on paying
dividends, Insurance: Mathematics and Economics 39 (1) (2006) 1-18.

[22] H. Cossette, D. Landriault, E. Marceau, Ruin probabilities in the compound markov bino-
mial model, Scandinavian Actuarial Journal 4 (2003) 301-323.

[23] H. Cossette, D. Landriault, E. Marceau, Exact expressions and upper bound for ruin prob-
abilities in the compound markov binomial model, Insurance: Mathematics and Economics
34 (3) (2004) 449-466.

[24] K.C. Yuen, J. Guo, Some results on the compound markov binomial model, Scandinavian
Actuarial Journal 3 (2006) 129-140.

[25] K.C. Yuen, J. Guo, Ruin probabilities for time-correlated claims in the compound binomial
model, Insurance: Mathematics and Economics 29 (1) (2001) 47-57.

[26] Y. Xiao, J. Guo, The compound binomial risk model with time-correlated claims, Insurance:
Mathematics and Economics 41 (1) (2007) 124-133.

15


